A quantum chemical study of the mechanisms of olefin addition to group 9 transition metal dioxo compounds
نویسندگان
چکیده
The mechanistic aspects of ethylene addition to MO2(CH2)(CH3) (M=Co, Rh, Ir) have been investigated with a Hartree-Fock/DFT hybrid functional at the MO6/LACVP* and B3LYP/LACVP* levels of theory to elucidate the reaction pathways on the singlet, doublet and triplet potential energy surfaces (PES). In the reaction of the IrO2CH2CH3 complex with ethylene, [3 + 2]C,O addition is the most plausible pathway on the singlet PES, the [3 + 2]O,O addition is the most favoured pathway on the doublet surface whiles the stepwise [1 + 1] addition involving the oxygen atom of the complex in the first step and the carbon atom of the complex in the second step is the most plausible pathway on the triplet PES. For the reaction of the RhO2(CH2)(CH3) complex, the [2 + 2]Rh,O addition pathway is the most favoured on the singlet surface, the [2 + 2]Rh,C is the most plausible pathway on the triplet PES and [3 + 2]C,O is the most plausible on the doublet surface. For the reactions of the CoO2(CH2)(CH3) complex, the [1 + 2]O addition is the most plausible on the singlet PES, [3 + 2]C=Co=O cycloaddition to form the five-membered intermediate is the most preferred pathway on the doublet PES, whiles on the triplet PES the preferred pathway is the [3 + 2] addition across the O=Co=O bond of the metal complex. The reactions of olefins with the Co dioxo complex have lower activation barriers for the preferred [3 + 2] and [2 + 2] addition pathways as well as fewer side reactions than those of the rhodium and iridium systems. This could imply that the cobalt dioxo complexes can efficiently and selectively catalyze specific reactions in oxidation of olefins than Rh and Ir oxo complexes will do and therefore Co oxo complexes may be better catalysts for specific oxidation reactions of olefins than Rh and Ir complexes are. The activation barriers for the formation of the four-or five-membered metallacycle intermediates through [2 + 2] or [3 + 2] cyclo-addition are lower on the triplet PES than on the singlet PES for the formation of similar analogues. There are fewer competitive reaction pathways on the triplet surface than on the singlet PES. Also, cycloadditions that seem impossible on the singlet PES seem possible on the doublet and or triplet PESs, this is the case typically for the Rh and Co complexes, illustrating the importance of multiple spin states in organometallic reactions.Graphical AbstractTable of Contents Synopsis: A study of the mechanism of ethylene addition to MO2(CH2)(CH3)(M=Co,Rh,Ir) shows the reactions of the Co complex have lower activation barriers for the preferred [3+2] and [2+2] addition pathways and fewer side reactions than those of Rh and Ir. Reactions are more feasible and selective on the triplet PES than on the singlet PES. These illustrate the importance of multiple spin states in organometallic reactions and shows catalyst activity and selectivity decreases down the group.
منابع مشابه
Theoretical Study of Flavopiridol Binded to Transition Metals
More recently medical chemistry research has been focused on proteins that drive and controlcell cycle progression. Among them, the cyclin dependent kinases (cdk’s) are a group ofserine/threonine kinases, which rule the transition between successive stages of the cell cycle. Theactivity of cdk’s is regulated by multiple mechanisms, including binding to cyclins, which is a broadclass of positive...
متن کاملSynthesis and Reactions of a Tungsten Dioxo Complex
SYNTHESIS AND REACTIONS OF A TUNGSTEN DIOXO COMPLEX Deborah M. Bryant, BS Marquette University, 2010 Metal dioxo complexes are largely known for their ability to epoxidize olefins. The importance of these reactions is reflected in the patents for the ARCO and Halcon processes from the late 1960’s. It is very difficult to find literature that shows other indications for metal dioxo complexes. Ca...
متن کاملAb initio Study of Simple Mg-Ene Reactions of Propenyl Magnesium Halides and Ethylene (Type-I Intermolecular Reaction)
The insertion of an olefinic C=C bond into a metal-carbon bond is of potential interest as a preparativeroute to new products and as results of C-C coupling reactions to organic compounds. The allyl compoundsof Mg, react with an olefin by inversion of the allyl group via a six center transition state. These precyclicreactions may be one of the most important classes of organic reactions. The re...
متن کاملDiels–Alder [4+2] Cycloadditions of C20 with Some Diene and 1,2- Dioxo Compounds: A Theoretical Study
Diels–Alder [2+4] cycloaddition products of the reaction between C20 and C4H4X2 or C2O2X2 (X = H, F, Cl, CH3, NH2, NO2, and OH) were studied atB3LYP level of theory with 6-31G, 6-31G(d, p) and 6-311G(d, p) basis...
متن کاملInterplay of reversible chain transfer and comonomer incorporation reactions in coordination copolymerization of ethylene/1–hexene
Coordinative chain transfer polymerization (CCTP) has opened a new path for the development of novel products like olefin block copolymers and chain-end functional polyolefins. However, conflicting results are frequently reported on the catalyst performance including activity and comonomer selectivity under CCTP conditions. Here we have selected two catalysts including rac-ethylenebis(1-η5-inde...
متن کامل